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ABSTRACT
The evolution of the meteorite flux to Earth can be studied by determining the terres-

trial ages of meteorites collected in hot deserts. We measured the terrestrial ages of 54 stony 
meteorites from the El Médano area, in the Atacama Desert, Chile, using the cosmogenic 
nuclide 36Cl. With an average age of 710 ka, this collection is the oldest collection of nonfossil 
meteorites at Earth’s surface. This allows both determination of the average meteorite flux 
intensity over the past 2 m.y. (222 meteorites larger than 10 g per km2 per m.y.) and discus-
sion of its possible compositional variability over the Quaternary Period. A change in the flux 
composition, with more abundant H chondrites, occurred between 1 and 0.5 Ma, possibly due 
to the direct delivery to Earth of a meteoroid swarm from the asteroid belt.

INTRODUCTION
The delivery of extraterrestrial matter to Earth 

is controlled by the complex dynamic evolu-
tion of the solar system bodies. The past flux 
of extra terrestrial matter to Earth’s surface has 
been studied at different spatial and time scales. 
Impact craters allow quantification of the long-
term flux, but only for large impactors (e.g., Maz-
rouei et al., 2019). At the other end of the size 
spectrum, micro meteorites allow study of the 
extraterrestrial dust reaching Earth (e.g., Genge, 
2008; Heck et al., 2017). Meteorites allow esti-
mation of the flux of intermediate-size (centi-
meter- to meter-scale) meteoroids to Earth’s 
surface. Fossil meteorites may shed light on the 
very ancient flux (for a 1.75 m.y. time window 

during the Middle Ordovician, see, e.g., Schmitz 
et al., 2001; Schmitz, 2013). Meteor observa-
tions have allowed the intensity of the current 
flux of meteorites to Earth to be estimated (e.g., 
Halliday et al., 1989; Zolensky et al., 2006), 
while observed meteorite falls (1312 registered 
meteor ites as of May 2019) provide information  
about meteor ite flux composition over the last 
two centuries. On the other hand, meteorite 
“finds” (for which the fall has not been observed; 
66,165 meteorites as of May 2019) allow the 
intensity and composition of the meteorite flux 
to be constrained on longer time scales more rel-
evant to geological and astronomical processes 
(e.g., Bland et al., 1996; Benoit and Sears, 1996; 
Graf et al., 2001). Most meteor ite finds come 
from Antarctica (64%) and hot deserts (~30%), 
which are suitable areas for both preservation 

and recovery. The terrestrial ages of hot des-
ert meteorites are usually in the 30–0 ka range 
and rarely exceed 50 ka (Jull, 2006). Antarctic 
meteor ites have older terrestrial ages, vary-
ing between ice fields, but they rarely exceed 
150 ka (Welten et al., 2006). These time scales 
are still short with respect to those involved in 
the dynamic evolution of the solar system bodies 
(e.g., Bottke et al., 2005). Moreover, the large 
Antarctic meteorite collection, with older ter-
restrial ages, cannot be easily used to constrain 
the meteor ite flux due to biases introduced by 
meteor ite concentration mechanisms (Whillans 
and Cassidy, 1983), and the difficulty in iden-
tifying paired fragments (Zolensky, 1998), as 
opposed to passive in situ accumulation in hot 
deserts. The Atacama Desert in Chile is the old-
est and driest of the hot deserts on Earth (Clarke, 
2005; Dunai et al., 2005). It has been shown to be 
an important meteorite reservoir, with the highest 
meteorite density ever deter mined in hot deserts 
(Gattacceca et al., 2011; Hutzler et al., 2016). 
We present in this study the terrestrial ages of 54 
meteorites recovered from the Atacama Desert.

SAMPLES
We randomly selected 54 unpaired meteor-

ites from 388 that were found in the El  Médano 
and Caleta el Cobre dense collection areas 
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(Fig. 1). These two adjacent areas are collec-
tively termed El Médano in this paper. These 
areas have been shown to bear the highest 
meteor ite concentration in hot deserts ( Hutzler 
et al., 2016). These 54 meteorites are all ordi-
nary chondrites. Ordinary chondrites are the 
most abundant class of meteorites, and they 
are overrepresented in the El  Médano collec-
tion (where they represent 96% of the meteor-
ite population) because of recovery biases 
( Hutzler et al., 2016). The 54 meteorites span 
the three groups of ordinary chondrites: high-
iron (H type; 25 meteorites), low-iron (L type; 
26 meteorites), and low-iron low-metal (LL type; 
3 meteorites). Based on recovery location, 
petrography, silicate geochemistry, and mag-
netic susceptibility, special care was taken to 
discard possibly paired meteorites to avoid sta-
tistical overrepresentation of large falls that 
can produce multiple meteorites. Terrestrial 
ages were determined by measuring the 36Cl 
(half-life: 301 ± 0.01 k.y.) concentration in 
the FeNi metal fraction of these meteorites 
(see the GSA Data Repository1 for complete 
data and methods).

OLDEST COLLECTION OF 
NONFOSSIL METEORITES

The absence of a geographic trend in the ages 
(Fig. 1) confirms that pairing did not affect the 
age distribution and was properly assessed by 
Hutzler et al. (2016). As an extra precaution, 

the few groups of meteorites with similar clas-
sification and terrestrial age were checked again 
for possible pairing using a variety of criteria, 
in particular, petrography. No pairing was evi-
denced. Although shielding in large meteoroids 
may account for overestimation of some ages, the 
measured cosmogenic radionuclide content of 
ordinary chondrite falls shows that shielding has 
affected only 3 out of 31 studied meteorites (Graf 
et al., 2001; Dalcher et al., 2013). Furthermore, 
the meteorite fall population is strongly biased 
toward large masses (more likely to be observed 
and recovered), as evidenced by their mass dis-
tribution compared to that of meteorite finds or 
theoretical estimates (e.g., Huss, 1990). We note  
that the three ordinary chondrites showing sig-
nificant shielding (Richardton [USA], Uberaba 
[Brazil], and La Criolla [Argentina] meteorites) 
all have masses >40 kg. Such large meteor ites  
are exceedingly rare in unbiased meteorite col-
lections like the El Médano collection. There-
fore, only a few percent of the El Médano 
meteor ite collection may have been affected by 
shielding. This would correspond to a couple 
of meteorites with no consequence on the over-
all age distribution. With a mean terrestrial age 
of 710 ka, the El Médano collection is by far 
the oldest collection of nonfossil meteorites on 
Earth’s surface (Fig. 2). Approximately 30% of 
the samples are older than 1 Ma, and two are 
older than 2 Ma.

For comparison, meteorites from other hot 
deserts and Antarctica have an average terres-
trial age of only 12 ka and 99 ka, respectively 
(computed from 152 and 398 terrestrial ages, re-
spectively, from the MetBase database [Koblitz, 
2005]; in agreement with Jull, 2006). The results 
of the present study are consistent with the old 
ages of the Atacama Desert surfaces associated 

1GSA Data Repository item 2019247, methods 
and terrestrial ages of the 54 meteorites studied in this 
work, is available online at http:// www .geosociety .org 
/datarepository /2019/, or on request from editing@ 
geosociety .org.

Figure 1. Map of El Médano and Caleta el Cobre areas of the Atacama Desert, Chile, with 
54 dated samples, with their class (H, L, or LL) and their age. H—high iron; L—low iron; 
LL—low iron, low metal.

Figure 2. Cumulative terrestrial age distribution measured by 36Cl (blue) and exponential best 
fit (red). Right panel is a focus on range 65–0 ka. Shaded area corresponds to maximum 
age uncertainty of 90 k.y., derived by propagation. Our results are compared to cumula-
tive age distribution of Antarctic (light blue) and hot desert (yellow) meteorites. Both 14C 
and 36Cl age measurements were selected for Antarctica meteorites, whereas data for hot 
desert meteorites (Atacama Desert samples excluded) only consist of 14C measurements.
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with long-standing hyperaridity (Clarke, 2005; 
Dunai et al., 2005), and they offer an explana-
tion for the unusually high number of meteor ites 
that were found in the El Médano area (~190 
unpaired meteorites larger than 10 g per km2 ; 
Hutzler et al., 2016). The age distribution can 
be fitted with an exponential law decrease with 
a half-life of 590 k.y. (Fig. 2). The smooth ex-
ponential decrease suggests that no discrete 
meteor ite removal event, such as surface re-
working, occurred over the last 2 m.y., but in-
stead, that meteorites are removed by continuous 
processes, likely wind abrasion and fragmen-
tation. This distribution suggests that ordinary 
chondrites are unlikely to be preserved for more 
than 2.5–3 m.y. in the Atacama Desert, except 
perhaps for the large stones (>10 kg), which are 
exceedingly rare.

METEORITE FLUX ESTIMATE
The smooth decrease of the age distribu-

tion is consistent with a constant meteorite flux 
combined with meteorite removal by weather-
ing. This assumption means that the resulting 
meteor ite surface density N(t) on the ground 
satisfies the following evolution equation:

 dN(t) = α × dt – λ × N(t) × dt, (1)

where α is the meteorite flux, and λ is the de-
cay rate (λ = ln(2)/t1/2). This equation can be 
solved as:

 N(t) = (1 – e–λt) × α/λ + N(t = 0). (2)

Whatever the value of N(t = 0), an equilib rium 
state is reached after a few half-lives (590 k.y.), 
after which the meteorite surface density remains 
constant at a saturated value Nsat = α/λ. We con-
sider here meteorites with mass >10 g. Using the 
meteorite density of 189 ± 14 per km2 accord-
ing to Hutzler et al. (2016), and the decay rate 
computed analytically from the terrestrial age 
distribution (Fig. 2), we determined a fall rate of 
222 ± 15 meteorites above 10 g per km2 per m.y. 
This estimate is similar to the 225 ± 81 meteorites 
above 10 g per km2 per m.y. over the past 50 k.y. 
given by Bland et al. (1996) by dating meteor-
ites from Nullarbor (Australia). However, these 
values are higher than the estimate of 83 meteor-
ites above 10 g per km2 per m.y. determined by 
Halliday et al. (1989). This latter estimate is less 
representative of the average meteorite flux be-
cause of the low number of events (56 meteorite 
fall events versus 388 meteorites in this work) 
and the short time window (11 yr versus 2 m.y. 
in this work).

METEORITE FLUX VARIABILITY 
DURING THE QUATERNARY?

H and L chondrites represent the vast ma-
jority (78%) of meteorites, and offer the most 
robust statistical indicator of possible varia-

tion in the composition of the meteorite flux to 
Earth. The H chondrite fraction with respect to 
total (H + L) chondrites is presented in Figure 3. 
The overall H/L ratio of our sample selection 
(25/26) is different from the H/L ratio of the 
total El Médano collection (1.74 after pairing; 
Hutzler et al., 2016). To correct for this bias 
introduced by our random selection, we applied 
scaling factors to the H and L numbers so that 
the overall H/L ratio is 1.74, while the total 
number of (H + L) meteorites remains 51. The 
error bars were computed as the standard de-
viation of a Poisson distribution that describes 
the number of independent events occurring 
in an interval of time. The plot shows that H 
chondrites dominated the flux between 1.2 
and 0.4 Ma. A change, leading to nearly equal 
proportions of H and L meteorites, occurred 
at 0.5 Ma, and this broadly fits with the pro-
portions of falls and finds in other hot deserts 
(Fig. 3). Previous studies have shown that H 
chondrites weather more rapidly than L chon-
drites, most likely because of their higher me-
tallic iron content, which is more sensitive to 
weathering (Bland et al., 1998; Munayco et al., 
2013). This effect may account for the higher 
proportion of L chondrites before 1 Ma, but 
it contradicts the observed higher proportion 
of H chondrite between 1 and 0.5 Ma. There-
fore, a dynamic explanation must be invoked. 
The delivery of meteorites to Earth from the 

main asteroid belt starts when the meteor oid 
orbits are dynamically excited above the Earth-
crossing eccentricity threshold by a resonance 
in the asteroid belt (e.g., Bottke et al., 2000). A 
population of meteoroids on resonant orbits has 
a typical lifetime of 0.5 m.y. before decaying 
in number, mostly by colliding with the Sun 
(Gladman et al., 1997). The duration is fully 
consistent with the time scale of the bump in 
Figure 3. Consequently, a potential scenario 
could be the direct delivery of a population of 
meteoroids in a resonant orbit from the main 
belt following the breakup of or cratering event 
on a close-by asteroid. A population of debris 
(the meteoroids) would have entered the reso-
nance ~1 m.y. ago, and the eccentricities of the 
meteoroids increased rapidly, such that their 
trajectories started to intersect Earth’s orbit. The 
flux of meteorites from this population started 
to decay after 0.5 m.y. Another hypothesis is 
that a swarm of meteoroids on very similar or-
bits, similar to a cometary trail but generated 
by the breakup of a near-Earth asteroid (e.g., 
Wiegert and Brown, 2005), had a favorable en-
counter configuration with Earth between 1 and 
0.5 m.y. ago. The geometry of intersection of an 
inclined orbit with Earth depends on the value 
of the argument of the perihelion relative to the 
ecliptic. In that way, the precession rate of the 
argument of the peri helion sets the duration of 
the favorable encounter configuration and the 

Figure 3. High-iron (H) chondrite fraction evolution (with respect to total H + L [low iron] chon-
drites) during the past 2.6 m.y. Values derived from our data set have been corrected by a scal-
ing factor so that the overall H/L ratio matches the H/L ratio of 1.74 estimated for the entire El 
Médano collection (see text). Vertical dashed lines show bins, and numbers in boxes are number 
of samples within bin. Uncertainties were computed as the standard deviation of a Poisson 
distribution. Green dot is the current ratio computed from the meteorite fall population; orange 
dot is value computed from hot desert collection (uncertainties are too small to be shown).
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time scale on which the configuration repeats. 
The typical precession rates of the argument of 
the perihelion of near-Earth asteroids are in the 
range 10–90 arcsec yr–1. This implies that each 
orbital intersection is short-lived and repeats 
every 40 k.y. This period is 20 times smaller 
than the duration of the H-peak evidence in our 
results, which does not favor this scenario. Both 
scenarios remain hypothetical and need to be 
investigated in detail, especially by measuring 
the cosmic-ray exposure age of the data set. 
Indeed, a short exposure age for the excess of 
H chondrites making up the bump is required 
for such a rapid delivery from the asteroid belt 
to Earth.

CONCLUSION
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